An analytical solution for estimating percolation rate by fitting temperature profiles in the vadose zone.
نویسندگان
چکیده
We present a simple analytical solution for one-dimensional steady heat transfer with convection and conduction through a multilayer system such as a vadose zone. We assume that each layer is homogeneous and has a constant thermal diffusivity. The mass/heat flow direction is perpendicular to the layers, and the mass flow rate is a constant. The analytical solution presented in this study also assumes constant known temperatures at the two boundaries of the system. Although the analytical solution gives the temperature as a function of a few parameters, we focus on the inverse application to estimate the percolation rate in a vadose zone. Example applications have shown that with reliable field observation data, the solution can be used to determine the percolation rate to high degree of accuracy (e.g., to mm/year). In some other cases, the solution may also be helpful in characterizing potential lateral flow along layer divides.
منابع مشابه
Multiphase Reactive Transport Modeling of Seasonal Infiltration Events and Stable Isotope Fractionation in Unsaturated Zone Pore Water and Vapor at the Hanford Site
and diffusive transport). Developing tractable analytical equations for these processes requires simplifying asNumerical simulations of transport and isotope fractionation prosumptions, which lead to analytical methods that are not vide a method to quantitatively interpret vadose zone pore water stable isotope depth profiles based on soil properties, climatic condieasily adapted to field condit...
متن کاملEstimation of percolation flux from borehole temperature data at Yucca Mountain, Nevada.
Temperature data from the unsaturated zone (UZ) at Yucca Mountain are analyzed to estimate percolation-flux rates and overall heat flux. A multilayer, one-dimensional analytical solution is presented for determining percolation flux from temperature data. Case studies have shown that the analytical solution agrees very well with results from the numerical code, TOUGH2. The results of the analys...
متن کاملRisk assessment of industrial hydrocarbon release and transport in the vadose zone as it travels to groundwater table: A case study
In this paper, a modeling tool for risk assessment analysis of the movement of hydrocarbon contaminants in the vadose zone and mass flux of contamination release into the groundwater table was developed. Also, advection-diffusion-reaction equations in combination with a three-phase equilibrium state between trapped air, soil humidity, and solid particles of unsaturated soil matrix were numerica...
متن کاملUsing Burnett Equations to Derive an Analytical Solution to Pressure-Driven Gas Flow and Heat Transfer in Micro-Couette Flow
The aim of the present study is deriving an analytical solution to incompressible thermal flow in a micro-Couette geometry in the presence of a pressure gradient using Burnett equations with first- and second-order slip boundary conditions. The lower plate of the micro-Couette structure is stationary, whereas the upper plate moves at a constant velocity. Non-dimensional axial velocity and tempe...
متن کاملThermodynamic Study of the Ion-Pair Complexation Equilibria of Dye and Surfactant by Spectral Titration and Chemometric Analysis
Surfactant-dye interactions are very important in chemical and dyeing processes. The dyes interact strongly with surfactant and show new spectrophotometric properties, so the UV-vis absorption spectrophotometric method has been used to study this process and extract some thermodynamic parameters. In this work, the association equilibrium between ionic dyes and ionic surfactant were studied by a...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Journal of contaminant hydrology
دوره 68 1-2 شماره
صفحات -
تاریخ انتشار 2004